Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing

نویسندگان

  • Sundeep Rangan
  • Alyson K. Fletcher
  • Vivek K. Goyal
چکیده

The replica method is a non-rigorous but widely-accepted technique from statistical physics used in the asymptotic analysis of large, random, nonlinear problems. This paper applies the replica method to non-Gaussian maximum a posteriori (MAP) estimation. It is shown that with random linear measurements and Gaussian noise, the asymptotic behavior of the MAP estimate of an n-dimensional vector “decouples” as n scalar MAP estimators. The result is a counterpart to Guo and Verdú’s replica analysis of minimum mean-squared error estimation. The replica MAP analysis can be readily applied to many estimators used in compressed sensing, including basis pursuit, lasso, linear estimation with thresholding, and zero norm-regularized estimation. In the case of lasso estimation the scalar estimator reduces to a soft-thresholding operator, and for zero normregularized estimation it reduces to a hard-threshold. Among other benefits, the replica method provides a computationally-tractable method for exactly computing various performance metrics including mean-squared error and sparsity pattern recovery probability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES Asymptotic MMSE Analysis Under Sparse Representation Modeling

Compressed sensing is a signal processing technique in which data is acquired directly in a compressed form. There are two modeling approaches that can be considered: the worst-case (Hamming) approach and a statistical mechanism, in which the signals are modeled as random processes rather than as individual sequences. In this paper, the second approach is studied. Accordingly, we consider a mod...

متن کامل

Maximum-A-Posteriori Signal Recovery with Prior Information: Applications to Compressive Sensing

This paper studies the asymptotic performance of maximum-a-posteriori estimation in the presence of prior information. The problem arises in several applications such as recovery of signals with non-uniform sparsity pattern from underdetermined measurements. With prior information, the maximum-a-posteriori estimator might have asymmetric penalty. We consider a generic form of this estimator and...

متن کامل

Phase diagram of matrix compressed sensing

In the problem of matrix compressed sensing, we aim to recover a low-rank matrix from a few noisy linear measurements. In this contribution, we analyze the asymptotic performance of a Bayes-optimal inference procedure for a model where the matrix to be recovered is a product of random matrices. The results that we obtain using the replica method describe the state evolution of the Parametric Bi...

متن کامل

The Mutual Information in Random Linear Estimation Beyond i.i.d. Matrices

There has been definite progress recently in proving the variational single-letter formula given by the heuristic replica method for various estimation problems. In particular, the replica formula for the mutual information in the case of noisy linear estimation with random i.i.d. matrices, a problem with applications ranging from compressed sensing to statistics, has been proven rigorously. In...

متن کامل

Statistical Mechanics of MAP Estimation: General Replica Ansatz

The large-system performance of maximum-a-posterior estimation is studied considering a general distortion function when the observation vector is received through a linear system with additive white Gaussian noise. The analysis considers the system matrix to be chosen from a large class of random ensembles. We take a statistical mechanical approach by introducing a spin glass corresponding to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009